
Getting
Started With

Agenda
• There isn’t enough time to teach a

whole programming language in this
session!

• But we can look at:
• Basic examples of the syntax
• How it makes your life easier
• What makes RPG a great business language
• A few powerful features of RPG

What is

• A business-oriented programming language
• Makes it very easy to work with databases, write business rules, work with

screens, and print reports.
• It does not stand for Report Program Generator.

• It used to -- however... In 1994 IBM changed it to officially not stand for anything!

• Even amongst season professionals, there is a lot of confusion about the
name, the "versions", and languages released.

• Versions are backward compatible, allowing code to move forward to new
versions when they are available.

• Very much under development, new enhancements released every spring
and fall. More than 30 major enhancements in the past 5 years.

Language Introduc
ed

Stopped
Enhancing/Supporting

FARGO
(Fourteen-O-One Automatic
Report Generation Operation)

1959 IBM 1401 1960 / 1971

RPG ("RPG I")
(Report Program Generator)

1960 IBM 1401 1971

RPG II 1968 IBM System/3, 34, 36, Mainframes, Others,
AS/400 with System/36 Environment

1988 / still supported

RPG III 1978 IBM System/38, AS/400, Windows, Others 1993 / still supported

RPG IV 1994 Windows, IBM i, Others still enhanced / supported

Languages

NOTE: The numbers I, II, III, IV are not properly known as "versions" – but different
languages. Each of the above has many different versions available.

Compiler Language Nicknames
System/36 Compatible RPG II RPG II RPG/36
System/38 Compatible RPG III RPG III RPG/38

RPG/400 RPG III
Visual RPG (discontinued) RPG III VRPG
VisualAge for RPG (discontinued) RPG IV VARPG

ILE RPG for IBM i (formerly ILE RPG/400) RPG IV RPGLE, RPGILE, RPG/FREE

NOTE: Versions of the ILE RPG compiler that are still supported are 7.2, 7.3, 7.4
and 7.5. (Sometimes called V7R2, V7R3, etc)

Compilers

 C *INLR DOUEQ *ON

 C WRITE INVINQ2F
 C EXFMT INVINQ2C
 C MOVEL *BLANKS SCMSG

 C *IN03 IFEQ *ON
 C *IN12 OREQ *ON
 C LEAVESR
 C ENDIF

 C *IN25 IFEQ *ON
 C MOVE *OFF *IN25
 C EXSR OPENURL
 C ENDIF

 C *IN08 IFEQ *ON
 C MOVEL 'B' MODE
 C Z-ADD 2 STEP
 C LEAVESR
 C ENDIF

 C ENDDO

 dou *inlr = *on;

 write INVINQ2F DSP2F;
 exfmt INVINQ2C DSP2C;
 scMsg = *blanks;

 if *in03 = *on or *in12 = *on;
 leavesr;
 endif;

 if *in25 = *on;
 *in25 = *off;
 exsr openURL;
 endif;

 if *IN08 = *ON;
 mode = 'B';
 step = 2;
 leavesr;
 endif;

 enddo;

Fixed vs Free-Format

It surprises a lot of people who are new to RPG that these aren't different languages,
or even different versions of RPG. They are both compiled with the ILE RPG compiler,
both compatible with version 7.5, and both considered RPG IV!

 dou *inlr = *on;

 write INVINQ2F DSP2F;
 exfmt INVINQ2C DSP2C;
 scMsg = *blanks;

 if *in03 = *on or *in12 = *on;
 leavesr;
 endif;

 if *in25 = *on;
 *in25 = *off;
 exsr openURL;
 endif;

 if *IN08 = *ON;
 mode = 'B';
 step = 2;
 leavesr;
 endif;

 enddo;

Recommendation: Don't Bother Learning Fixed!

• Don't bother learning fixed format (until
you need it)

• There are free tools to convert from fixed
format to free

• Also, once you understand free format, it's
easy enough to read fixed format.

• Code the new stuff in free.

Hello World
 snd-msg 'Hello World';
 *inlr = *on;

**free

dcl-s name varchar(30);

name = 'Scott Klement';

if %subst(name: 1: 5) = 'Scott';
 snd-msg 'Hello, Scott!'

endif;

*inlr = *on;

snd-msg just writes an informational
message.
*inlr = *on ends the program.

**FREE allows us to start in column 1, and
make lines as long as we want.

DCL-S declares a variable.

IF <condition>;

 ...stuff to do...

Endif;

Notice that there is a semicolon after the if
condition.

Declaring Variables
Variables in RPG are declared with a DCL-xxx keyword.

Most of the time, this means using DCL-S
• "declare stand alone variable"

Sometimes you declare data structures, prototypes, procedure interfaces, and other things.
• DCL-S = declare standalone
• DCL-C = declare constant
• DCL-DS = declare data structure
• DCL-F = declare file (database table, screen, printer, tape)
• DCL-PR = prototype (for calling other routines)
• DCL-PI = procedure interface (parameter interface to a routine)
• DCL-PROC = procedure/function

DCL-S <variable name> <data type> (length) keywords.

Declaring Variables
DCL-S <variable name> <data type> (length) keywords;

dcl-s Var1 char(10); // fixed-length 10 characters
dcl-s Var2 varchar(1234); // variable-length 1234 chars
dcl-s Var3 varchar(1234) ccsid(*utf8); // variable-length, but in utf-8
dcl-s Var4 ucs2(4321) ccsid(*utf16); // fixed-length but in utf-16

dcl-s Var5 packed(9: 2); // xxxxxxx.xx
 // packed decimal 9 digits, 2 decimals
 // (digits is the total incl the decimals)

 // xxxxxxx.xx
dcl-s Var6 packed(18: 0); // xxxxxxxxxxxxxxxxx
dcl-s Var7 zoned(11: 3); // xxxxxxxx.xxx

dcl-s Var8 int(10); // 32-bit (10 decimal digits) integer
dcl-s Var9 float(8); // 64-bit (8 byte) floating point

dcl-s Var10 date; // date variable (default YYYY-MM-DD format)
dcl-s Var11 date(*usa); // date variable in MM/DD/YYYY format
dcl-s var12 time; // time variable
dcl-s var13 timestamp; // date+time variable

DCL Keywords
• CCSID = character set of the variable (special values *utf8 and *utf16 for Unicode)
• INZ = initialize (set the initial variable value)
• LIKE = variable is the same data type/length as another variable
• LIKEDS = variable is like a data structure
• Many others exist – I won't try to name them all here!

dcl-s Var3 varchar(1234) ccsid(*utf8);
dcl-s Var4 ucs2(4321) ccsid(*utf16);

dcl-s Var4 ucs2(4321) ccsid(*utf16);

dcl-s Var5 packed(9: 2);
dcl-s price like(Var5) inz(10.45);

dcl-ds Name_t;
 FirstName varchar(15) inz('Scott');
 LastName varchar(15) inz('Klement');

end-ds;

dcl-ds OtherName likeds(Name_t) inz(*likeds);

There are many DCL keywords
and an endless list of things you
can do with them – they are a
super powerful feature of RPG!

• Strictly-typed variables allow you to catch more potential errors at
compile-time.

• This prevents bad data from getting into your system.
• DCL keywords make it easy and powerful

• True decimal arithmetic.
• Database is better integrated into the language.
• Easy to build full-screen applications
• Easy to work with date, time and timestamp (date+time) variables.
• Easy to work with REST APIs, XML, JSON

Why is RPG Good For Business?

=1*(.5-.4-.1)

Floating Point vs. True Decimal Math

RPG supports true decimal arithmetic, whereas
most programming languages using floating point
numbers.

Why does this matter?

Consider this Excel formula. What do you expect the
result to be?

Excel uses floating point – like most programming
languages – and is prone to the same problems.

Floating Point vs. True Decimal Math
It should've been 0.

But all numbering systems (decimal, binary, hex,
etc) represent certain fractions with repeating
numbers.

In decimal, 1/3 is 0.33333333333 (repeats
forever).

But the computer can't store an infinite number
of decimal places – so it has to round it off at
some point.

The numbers that cause this in binary are
different than the ones in decimal – but the
same problem exists.

As a business that serves humans – it's better to
round off in decimal, since that's what people
expect.

RPG works in decimal numbers, not binary.

To prove my point, here are examples in both C and Java. (Other languages
are similar – even RPG would do the same if you forced it to use floating
point math)

In all cases, they print the following (same as Excel):

Floating Point vs. True Decimal Math
#include <stdio.h>

int main(int argc, char **argv) {

 double result;

 result = 1*(.5-.4-.1);
 printf("%26.25f\n", result);

 return 0;
}

public class numbers2 {
 public static void main(String[] args) {

 double result;

 result = 1*(.5-.4-.1);
 System.out.println(String.format("%26.25f", result));

 }

}

-0.0000000000000000277555756

Is it okay for your business to have values that are slightly off?
• Payroll
• Revenue
• Inventory
• Quantity shipped to a customer

How Does That Affect Business?

RPG Packed vs. Zoned

dcl-s result1 packed(9: 2);
dcl-s result2 zoned(9: 2);

result1 = 1*(.5-.4-.1);
result2 = 1*(.5-.4-.1);

snd-msg %char(result1);
snd-msg %char(result2);

*inlr = *on;

Packed and Zoned are both numeric data types.

• Difference is how they're stored in
memory.

• Packed is a form of "binary coded
decimal", typically uses ½ the memory
of zoned.

• But zoned is easier to read if you see the
raw unformatted value in memory.

In both cases, you specify the size as a number of
digits and decimal places.

But they are "true decimal" types, not subject to
binary rounding

This will print:
0.00
0.00

Loops

DOW = Do While

Pretty much the same as a while loop in any
other language.

DOU = Dou Until (condition is checked at the
'enddo', so loop is always done once)

**Free

dcl-s X int(10);

dow X > 0;
 // do something

enddo;

dou X = 0;
 // do something

enddo;

For Loops

Loop through a range of numbers

Loop through the items in an array

Loop through a fixed set of arbitrary valuesv

for element in array;
 // do something

endfor;

for x = 1 to 10;
 // do something

endfor;

for item in %list('Item1': 'Item2': 'Item3');
 // do something

endfor;

I'm just scratching the surface of what the different types of loops can do –
just to give you a feel for it.

There are many, many, many more options available!

Sub-Procedures ("functions")

You can write your own functions and make
them available within the current program.

Or export them to make them available to
other programs as well.

RPG calls them "sub-procedures".

Notice that RPG's built-in functions always
begin with a % character. The functions you
write cannot begin with that character.

This makes it easy to distinguish the origin of a
function, and also makes it easy to avoid
naming clashes.

name = MyProcedure(last: first);
snd-msg name;

. . . other stuff could be here . . .

dcl-proc MyProcedure;

 dcl-pi *n;
 last varchar(15) const;
 first varchar(15) const;
 end-pi;

 dcl-s fullname varchar(30);

 fullname = first + ' ' + last;
 return fullname;

end-proc;

Integrated Database

DCL-F (declare file)
• Declares a database table

• keyed = Allows keyed (indexed) access.

• Automatically declares variables for all of
the columns ("fields") in the table ("file").

• CHAIN = loads a record by it's key.

dcl-f CUSTFILE disk keyed;

CUSTNO = 1500;
chain CUSTNO CUSTFILE;

// the CUSTFILE database table contains columns named
// CUSTNO, NAME, CONTACT, STREET, CITY, STATE, POSTAL
// and BALANCE -- all are ready to use!

Integrated Database – Java Comparison 1/3

import java.sql.*;
import com.ibm.as400.access.AS400JDBCDriver;

public class JavaTest {

 public static void main(String[] args) {

 try {
 // Load driver

 Class.forName("com.ibm.as400.access.AS400JDBCDriver");

 // connect to database

 String jdbcUrlFmt = "jdbc:as400://localhost;user=%s;password=%s;naming=system;";
 String jdbcUrl = String.format(jdbcUrlFmt, Credentials.user, Credentials.password);

 Connection conn = DriverManager.getConnection(jdbcUrl);

In most other languages (Java, in this
example) you have to:

• Import a database driver

• Use it to connect to the database

• Build an SQL statement in a character string

• Run the statement

• Read the results into columns

• Clean up after the statement

• Close the connection

Integrated Database – Java Comparison 2/3
 PreparedStatement stmt = conn.prepareStatement("select CUSTNO, NAME, CONTACT, "
 + "STREET, CITY, STATE, "
 + "POSTAL, TITLE, BALANCE "
 + "from CUSTFILE "
 + "where CUSTNO=?");
 stmt.setInt(1, 1500);

 ResultSet rs = stmt.executeQuery();
 while (rs.next()) {

 int CUSTNO = rs.getInt ("CUSTNO");
 String NAME = rs.getString("NAME");
 String CONTACT = rs.getString("CONTACT");
 String STREET = rs.getString("STREET");
 String CITY = rs.getString("CITY");
 String STATE = rs.getString("STATE");
 String POSTAL = rs.getString("POSTAL");
 double BALANCE = rs.getDouble("BALANCE");

 // Do something with the column values

 }

Integrated Database – Java Comparison 3/3
 rs.close();
 conn.close();
 }
 catch (Exception e) {
 System.out.println(e.getMessage());
 }

 }

}

dcl-f CUSTFILE disk keyed;

CUSTNO = 1500;
chain CUSTNO CUSTFILE;

if %found;
 // do something with the column values
endif;

Or, in RPG:

The bulk of work in a business application is
calculations and database:

• True decimal arithmetic

• Easier database operations

NOT FAIR! Not an Apples-To-Apples Comparison

Or, in RPG:

dcl-ds CUSTFILE ext end-ds;
dcl-s output varchar(500);

CUSTNO = 1500;

exec sql
declare rs cursor for
 select CUSTNO, NAME, CONTACT, STREET, CITY, STATE,
 POSTAL, TITLE, BALANCE
 from CUSTFILE
 where CUSTNO = :CUSTNO;

exec sql open rs;
exec sql fetch next from rs into :CUSTFILE;

dow sqlcode = 0;

 // Do something with the column values

 exec sql fetch next from rs into :CUSTFILE;
enddo;

exec SQL close rs;

RPG's proprietary native I/O isn't totally
equivalent to SQL. SQL is more modern and
can do many more things.

So let's compare the same example with using
SQL in RPG.

Notice the use of :CUSTNO instead of ?. This
makes the code much more readable.

Also, notice the SQL is not built in a string.
This lets the compiler & IDE detect errors in
your syntax.

It also makes the coding a lot easier, no need
to concatenate values (unless you want to),
just type what you want.

Easy Dates/Times

**Free

dcl-s DeliveryDate date(*usa);
dcl-s output varchar(80);
dcl-s LeadTime int(10);

LeadTime = 14;
DeliveryDate = %date() + %days(LeadTime);

output = 'Delivery Date = ' + %char(DeliveryDate);
snd-msg output;

*inlr = *on;

Just a quick example.

You can easily add or subtract days, months,
years, etc.

Or hours, minutes, seconds, etc from a time.

This type of logic is very common and
necessary in business!

Screens Are Easy

For basic text screens
• IBM provides an easy-to-use WYSIWYG

screen editor, where you can build your
screens using drag/drop, etc.

• Then you refer to these screens as "files" in
your program.

Screens Are Easy
dcl-f INVINQ2D workstn INDDS(dspIndMap);

... more code here ...

 dou DSP1.MSG = *BLANKS;

 exfmt INVINQ1 DSP1; // Displays the screen
 DSP1.MSG = *BLANKS;

 if EXIT or CANCEL;
 return QUIT;
 endif;

 if DSP1.INVNO <= 0;
 DSP1.MSG = 'Please enter an invoice number!';
 iter;
 endif;

 enddo;

For basic text screens
• EXFMT = "execute screen format".

• User can use the screen until they press
ENTER or a function key.

• Then control comes back to the program.

Reports Are Easy
Very much like screens, IBM provides a GUI
tool to create reports.

You then refer to the report as a file in your
RPG code.

In this case, I laid out the variable data for an
invoice.

Reports Are Easy
dcl-f INVOICE PRINTER oflind(overflow) usage(*output)
 usropn;

setll (myInvNo) INVDET;
reade (myInvNo) INVDETF;

write HEADING;

dow not %eof(INVDET);

 lineamt = %dec(qty * price: 9: 3);

 if overflow;
 write FOOTER;
 write HEADING;
 first = *on;
 endif;
 write DETAIL;

 reade (myInvNo) INVDETF;
enddo;

write FOOTER;

The fixed headings and graphical elements of
the invoice were designed in Microsoft Word
– I then told it to generate an "overlay".

The overlay gets merged with the data from
the printer file to make this invoice.

31

Ctl-Opt DFTACTGRP(*NO) ACTGRP('WEBAPI') PGMINFO(*PCML:*MODULE);

Dcl-F CUSTFILE Usage(*Input) Keyed PREFIX('CUST.');

Dcl-DS CUST ext extname('CUSTFILE') qualified End-DS;

Dcl-PI *N;
 CustNo like(Cust.Custno);
 Name like(Cust.Name);
 Street like(Cust.Street);
 City like(Cust.City);
 State like(Cust.State);
 Postal like(Cust.Postal);
End-PI;

Dcl-PR QMHSNDPM ExtPgm('QMHSNDPM');
 MessageID Char(7) Const;
 QualMsgF Char(20) Const;
 MsgData Char(32767) Const options(*varsize);
 MsgDtaLen Int(10) Const;
 MsgType Char(10) Const;
 CallStkEnt Char(10) Const;
 CallStkCnt Int(10) Const;
 MessageKey Char(4);
 ErrorCode Char(8192) options(*varsize);
End-PR;

Easy REST APIs
To write a quick & dirty REST API, all you need
to do is write a program that gets it's
input/output through parameters.

The operating system provides a tool called
"Integrated Web Services" that can be
configured to call this program.

It will handle all of the communications work,
converting data between JSON or XML and
the parameters, etc.

32

Dcl-DS err qualified;
 bytesProv Int(10) inz(0);
 bytesAvail Int(10) inz(0);

End-DS;

Dcl-S MsgDta Varchar(1000);
Dcl-S MsgKey Char(4);
Dcl-S x Int(10);

chain CustNo CUSTFILE;
if not %found;
 msgdta = 'Customer not found.';
 QMHSNDPM('CPF9897': 'QCPFMSG *LIBL': msgdta: %len(msgdta): '*ESCAPE'
 : '*PGMBDY': 1: MsgKey: err);

else;
 Custno = Cust.Custno;
 Name = Cust.name;
 Street = Cust.Street;
 City = Cust.City;
 State = Cust.State;
 Postal = Cust.Postal;

endif;

*inlr = *on;

Easy REST APIs
This API simply returns a customer's address
given a customer number.

The QMHSNDPM routine sends an error when
the customer wasn't found. (This is an older
example, a newer one might use SND-MSG to
do the same thing.)

Ctl-Opt OPTION(*SRCSTMT: *NODEBUGIO) DFTACTGRP(*NO);

Dcl-F CUSTFILE Usage(*Input) Keyed prefix('CUST.');
dcl-ds CUST ext extname('CUSTFILE') qualified end-ds;

Dcl-PR getenv Pointer extproc('getenv');
 var Pointer value options(*string);

End-PR;

dcl-s custno like(CUST.custno);
Dcl-S pos int(10);
Dcl-S uri varchar(1000);
Dcl-S json varchar(1000);
Dcl-C ID1 '/cust/';
Dcl-C ID2 '/custinfo/';

dcl-ds failure qualified;
 error varchar(100);

end-ds;

33

Handling XML or JSON Yourself
If you need to process XML or JSON from a
file, parameter, or other means (aside from
the Integrated Web Services) or if you want to
write the API yourself without a special tool,
it's relatively easy to do.

RPG provides a built-in way to map XML or
JSON to an RPG variable called DATA-INTO. (or
the older XML-INTO.)

Likewise, it can generate XML or JSON using
another tool called DATA-GEN.

34

uri = %str(getenv('REQUEST_URI'));

monitor;
 pos = %scan(ID1: uri) + %len(ID1);
 custno = %int(%subst(uri:pos));

on-error;
 failure.error = 'Invalid URI';
 DATA-GEN failure %DATA(json) %GEN('YAJLDTAGEN'
 : '{ "http status": 500, "write to stdout": true }');
 return;

endmon;

chain custno CUSTFILE;
if not %found;
 failure.error = 'Unknown customer number';
 DATA-GEN failure %DATA(json) %GEN('YAJLDTAGEN'
 :'{ "http status": 500, "write to stdout": true }');
 return;

endif;

DATA-GEN cust %DATA(json) %GEN('YAJLDTAGEN'
 :'{ "http status": 200, "write to stdout": true }');

return;

Easy REST APIs
In this example, the CUSTFILE database table
is automatically loaded into the CUST data
structure.

DATA-GEN is being used to convert the data
structure to JSON format and write it out.

As with most everything in this presentation, I
am just scratching the surface! This
functionality is full of loads of different
features and options to make it extremely
versatile!

35

Rich Community of Developers and Tools
Although this session focuses on what's in RPG itself, it's worth mentioning the huge
community of developers and tools out there:

• People in this community like helping each other!
• We are very close knit!
• Rich world of open source tools to help you (including things like Git and Jenkins)

• Vendors provide tools that make a lot of this stuff even easier... I can't list them all, but
some of my own are:
• MDCMS = Change Management / devops / agile
• MDREST4i = Easier APIs

• PROFOUND UI (previous job) make GUI web-based screens just as easily as text based ones.

• Many other vendors offer these types of things – lots of good choices available!

Recommended Resources:

• IBM Docs – the official source of documentation:
(online books, official IBM manuals)
Programming / ILE Languages / RPG

• Programming in ILE RPG (5th Edition) by Jim Buck & Bryan Meyers
(in-depth book with exercises, 664 pages)
https://www.amazon.com/Programming-ILE-RPG-Jim-Buck/dp/1583473793

• COMMON Bootcamp: Programming in ILE RPG
(getting started video -- no charge to COMMON members!)
http://www.common.org/education-events/boot-camp-training/programming-ile-rpg

• imPOWER Technologies
(instructor-led online courses)
https://impowertechnologies.com

Questions?

For this presentation visit my web site:

http://www.scottklement.com/presentations/

